Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

$\mathrm{AgCo}_{3} \mathrm{PO}_{4}\left(\mathrm{HPO}_{4}\right)_{2}$

Abderrahmen Guesmi and Ahmed Driss*

Département de Chimie, Faculté des Sciences, 1060 Campus Universitaire, Tunis, Tunisia
Correspondence e-mail: ahmed.driss@fst.rnu.tn

Received 17 September 2001
Accepted 18 October 2001
Online 22 December 2001
The structure of the hydrothermally synthesized compound $\mathrm{AgCo}_{3} \mathrm{PO}_{4}\left(\mathrm{HPO}_{4}\right)_{2}$, silver tricobalt phosphate bis(hydrogen phosphate), consists of edge-sharing CoO_{6} chains linked together by the phosphate groups and hydrogen bonds. The three-dimensional framework delimits two types of tunnels which accommodate Ag^{+}cations and OH groups. The title compound is isostructural with the compounds $A M_{3} \mathrm{H}_{2}\left(\mathrm{XO}_{4}\right)_{3}$ ($A=\mathrm{Na}$ or $\mathrm{Ag}, M=\mathrm{Co}$ or Mn , and $X=\mathrm{P}$ or As) of the alluaudite structure type.

Comment

The $A-\mathrm{Co}-X-\mathrm{O}$ system (A is a monovalent cation and X is P or As) have been investigated as part of a search for new materials which can exhibit interesting properties in relation to their structures (magnetism, ion exchange, ionic conductivity, etc.) In recent studies of the $\mathrm{Na}-\mathrm{Co}-\mathrm{P}-\mathrm{O}$ system, we described the structure of $\mathrm{Na}_{2} \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ synthesized at room temperature (Guesmi et al., 2000). In the present study, we have investigated the $\mathrm{Ag}-\mathrm{Co}-\mathrm{P}-\mathrm{O}$ system prepared by the hydrothermal method and we obtained the title compound, the structure of which is presented here.

Figure 1
A view of a sheet of the anionic framework of $\mathrm{AgCo}_{3} \mathrm{PO}_{4}\left(\mathrm{HPO}_{4}\right)_{2}$ with 50% probability displacement ellipsoids.

Figure 2
A projection of the structure of $\mathrm{AgCo}_{3} \mathrm{PO}_{4}\left(\mathrm{HPO}_{4}\right)_{2}$ along [001].
$\mathrm{AgCo}_{3} \mathrm{PO}_{4}\left(\mathrm{HPO}_{4}\right)_{2}$ crystallizes in the monoclinic space group $C 2 / c$ and is isostructural with the $A M_{3} \mathrm{H}_{2}\left(\mathrm{XO}_{4}\right)_{3}$-type compounds (A is Na or Ag, M is a metal and X is P or As) of the alluaudite structure type (Keller et al., 1981; Lii \& Shih, 1994; Leroux et al., 1995). The P and Co atoms are surrounded by four and six O atoms, respectively. The mean distances are $\mathrm{Co} 1-\mathrm{O} 2.108 \AA, \mathrm{Co} 2-\mathrm{O} 2.158 \AA, \mathrm{P} 1-\mathrm{O} 1.551 \AA$ and $\mathrm{P} 2-\mathrm{O}$ $1.552 \AA$, and these are in the same range as in the isostructural cobalt compounds; the longer distances, $\mathrm{P} 1-\mathrm{O}$ and $\mathrm{Co} 2-\mathrm{O}$, involve the O atom of the OH group. The bond-valence sums of the Ag, Co and P atoms are in good agreement with their oxidation states (Brown \& Altermatt, 1985).

The structure consists of infinite chains of edge-sharing CoO_{6} octahedra running along [101] and having a Co1-Co1Co 2 period. These chains are linked together by the phosphate groups to form polyhedral sheets parallel to the (101) plane (Fig. 1). Each $\mathrm{P}_{2} \mathrm{O}_{4}$ tetrahedron shares its four vertices with two chains of the same sheet. Adjacent sheets are interconnected by the tricoordinate O 5 vertex common to two $\mathrm{Co}^{2} \mathrm{O}_{6}$ octahedra and the $\mathrm{HP}^{2} \mathrm{O}_{4}$ tetrahedron.

The three-dimensional framework delimits two types of hexagonal tunnels running along the c direction, at $0,0, z$ and $\frac{1}{2}, 0, z$ (Fig. 2). The OH groups, pointing into one type of tunnel, are involved in strong hydrogen bonds (Brown, 1976). Square-plane-coordinated Ag^{+}cations are located in the second type of tunnel. The same coordination for this cation is found in the homologous arsenates (Keller et al., 1981).

Experimental

Single crystals of $\mathrm{AgCo}_{3} \mathrm{PO}_{4}\left(\mathrm{HPO}_{4}\right)_{2}$ were prepared hydrothermally from an aqueous solution of AgNO_{3} (Fluka, 99%), $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Fluka, 99%) and $\mathrm{H}_{3} \mathrm{PO}_{4}$ (Prolabo, 85%, density $1.70 \mathrm{Mg} \mathrm{m}^{-3}$), with the atomic ratio $\mathrm{Ag}: \mathrm{Co}: \mathrm{P}=2: 1: 2$. A glass tube was filled with the
mixture to about 25% in volume. The tube was sealed and heated to 573 K for 3 d . Normal cooling to room temperature produced pink parallelepiped crystals of $\mathrm{AgCo}_{3} \mathrm{PO}_{4}\left(\mathrm{HPO}_{4}\right)_{2}$.

Crystal data

$\mathrm{AgCo}_{3} \mathrm{PO}_{4}\left(\mathrm{HPO}_{4}\right)_{2}$
$M_{r}=571.59$
Monoclinic, C2/c
$a=12.035$ (2) \AA
$b=12.235$ (2) \AA
$c=6.541$ (2) \AA
$\beta=114.14$ (2) ${ }^{\circ}$
$V=878.9(3) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius CAD-4	$R_{\text {int }}=0.013$
diffractometer	$\theta_{\text {max }}=27^{\circ}$
$\omega / 2 \theta$ scans	$h=-14 \rightarrow 15$
Absorption correction: ψ scan	$k=-15 \rightarrow 0$
(North et ar.l., , 968$)$	$l=-8 \rightarrow 0$
$T_{\min }=0.17, T_{\text {max }}=0.309$	2 standard reflections
1048 measured reflections	frequency: 120 min
961 independent reflections	intensity decay: 0.4%
932 reflections with $I>2 \sigma(I)$	

932 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.068$
$S=1.22$
961 reflections
92 parameters
H atoms: see below
$D_{x}=4.320 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=10.8-13.8^{\circ}$
$\mu=8.38 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Parallelepiped, pink
$0.43 \times 0.18 \times 0.14 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.013 \\
& \theta_{\max }=27^{\circ} \\
& h=-14 \rightarrow 15 \\
& k=-15 \rightarrow 0 \\
& l=-8 \rightarrow 0 \\
& 2 \text { standard reflections } \\
& \text { frequency: } 120 \text { min } \\
& \text { intensity decay: } 0.4 \%
\end{aligned}
$$

Table 1
Selected interatomic distances (\AA).

$\mathrm{Ag}-\mathrm{O}^{\mathrm{i}}$	$2.382(3)$	$\mathrm{Co} 2-\mathrm{O} 3$	$2.156(2)$
$\mathrm{Ag}-\mathrm{O} 5$	$2.516(3)$	$\mathrm{Co} 2-\mathrm{O} 6$	$2.184(3)$
$\mathrm{Co} 1-\mathrm{O} 5^{\mathrm{iii}}$	$2.059(3)$	$\mathrm{P} 1-\mathrm{O} 4$	$1.537(2)$
$\mathrm{Co} 1-\mathrm{O} 4$	$2.079(2)$	$\mathrm{P} 1-\mathrm{O} 3^{\mathrm{v}}$	$1.543(3)$
$\mathrm{Co} 1-\mathrm{O} 3$	$2.096(3)$	$\mathrm{P} 1-\mathrm{O} 5$	$1.544(3)$
$\mathrm{C} 1-\mathrm{O} 4^{\mathrm{v}}$	$2.113(2)$	$\mathrm{P} 1-\mathrm{O} 6$	$1.581(3)$
$\mathrm{C} 1-\mathrm{O} 1$	$2.126(2)$	$\mathrm{P} 2-\mathrm{O} 2$	$1.549(3)$
$\mathrm{Co} 1-\mathrm{O} 2^{\mathrm{iv}}$	$2.176(2)$	$\mathrm{P} 2-\mathrm{O} 2^{\mathrm{ii}}$	$1.549(3)$
$\mathrm{Co} 2-\mathrm{O}^{\mathrm{iv}}$	$2.134(2)$	$\mathrm{P} 2-\mathrm{O} 1$	$1.554(2)$

Symmetry codes: (i) $x, 1-y, \frac{1}{2}+z$; (ii) $-x, y, \frac{1}{2}-z$; (iii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iv)
$\frac{1}{2}-x, \frac{1}{2}-y, 1-z$; (v) $\frac{1}{2}-x, \frac{1}{2}-y,-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{-}-\mathrm{H} \cdots \mathrm{O}^{\mathrm{i}}$	0.80	1.74	$2.520(3)$	164

Symmetry code: (i) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.

The position of the H atom was obtained by difference techniques and the $\mathrm{O} 6-\mathrm{H}$ bond length was restrained to $0.80 \AA$ by the DFIX option in SHELXL97 (Sheldrick, 1997).

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček \& Yordanov, 1992); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97; molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

The authors express their thanks to Professor A. Durif of CNRS, Grenoble, for his critical reading of the manuscript.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1345). Services for accessing these data are described at the back of the journal.

References

Brandenburg, K. (1998). DIAMOND. Version 2.0. University of Bonn, Germany.
Brown, I. D. (1976). Acta Cryst. A32, 24-31.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Guesmi, A., Zid, M. F. \& Driss, A. (2000). Acta Cryst. C56, 511-512.
Keller, P., Riffel, H., Zettler, F. \& Hess, H. (1981). Z. Anorg. Allg. Chem. 474, 123-134.
Leroux, F., Mar, A., Payen, C., Guyomard, D., Verbaere, A. \& Piffard, Y. (1995). J. Solid State Chem. 115, 240-246.

Lii, K.-H. \& Shih, P.-F. (1994). Inorg. Chem. 33, 3028-3031.
Macíček, J. \& Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

